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Vinı́cius A. Armentano - FEEC - UNICAMP - 2014 2



Introdução a Configuração de Parâmetros

Algoritmos Exatos ou Heurı́sticos de Otimização

• Técnicas de branch-and-cut e geração de colunas em softwares de
programação inteira mista, bem como meta-heurı́sticas para problemas
de otimização combinatória e contı́nua possuem mecanismos heurı́sticos
e estratégicos.

• A ativação, interação e comportamento desses mecanismos são
controlados por parâmetros cuja configuração tem um impacto
substancial na eficácia dos algoritmos de otimização
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Classes de Parâmetros

• Numéricos : valores reais, por exemplo, valor do coeficiente no resfriamento geométrico
de simulated annealing, tamanho da lista tabu, probabilidade de recombinação em
algoritmos genéticos.

• Categóricos : número discreto de valores não ordenados, que selecionam uma opção
dentre componentes ou mecanismos alternativos, por exemplo, vizinhanças distintas em
busca local, seleção de nós e variáveis em branch-and-cut.

• Ordinais : número discreto de valores ordenados, por exemplo, baixo, médio, alto.

• Booleanos : dois valores discretos, por exemplo, liga ou desliga um componente do
algoritmo.
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Exemplos de Parâmetros em Otimização Combinatória

• Parâmetros do método branch-and-cut em softwares incluem:

• Seleção de nós e variáveis

• Seleção de técnicas de pré-processamento

• Seleção de cortes

• Balanceamento entre ramificação e cortes

• Escolha de ênfase em factibilidade ou otimalidade

• CPLEX 12.1 : 135 parâmetros e gera uma configuração automática de parâmetros.

• Em um experimento (Hutter et al., 2010) 76 parâmetros foram selecionados que
produzem 1, 9 · 1047 configurações.

• Metaheurı́sticas

• Simulated annealing : escolha de vizinhança, definição dos componentes e
parâmetros do programa de resfriamento.

• Busca tabu de curto prazo : escolha da vizinhança, definição de atributo e regra de
proibição, e tamanho da lista tabu.

• Algoritmo genético: definição de estratégias de seleção e substituição, e de
operadores de recombinação e mutação.

Vinı́cius A. Armentano - FEEC - UNICAMP - 2014 5



Problema de Configuração Automática de Parâmetros

• Interesse por este problema iniciado, provavelmente, pelo software CALIBRA (Adenso-Dı́as
e Laguna, 2006) com limite de otimizar no máximo 5 parâmetros numéricos.

• Interesse cresceu bastante e hoje existem diversos softwares disponı́veis livremente.

• Vamos apresentar dois métodos recentes de configuração offline de parâmetros que usam
duas fases.

• Na fase de treinamento, estes métodos determinam a melhor configuração de parâmetros
para um conjunto representativo de instâncias.

• Na fase de teste, esta configuração é aplicada a instâncias distintas (generalização).
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Autonomous Search

Chapter 3
Automated Algorithm Configuration and
Parameter Tuning

Holger H. Hoos

3.1 Introduction

Computationally challenging problems arise in the context of many applications,
and the ability to solve these as efficiently as possible is of great practical, and
often also economic, importance. Examples of such problems include scheduling,
time-tabling, resource allocation, production planning and optimisation, computer-
aided design and software verification. Many of these problems are NP-hard and
considered computationally intractable, because there is no polynomial-time algo-
rithm that can find solutions in the worst case (unless NP=P). However, by using
carefully crafted heuristic techniques, it is often possible to solve practically rel-
evant instances of these ‘intractable’ problems surprisingly effectively (see, e.g.,
55, 3, 54) 1.

The practically observed efficacy of these heuristic mechanisms remains typi-
cally inaccessible to the analytical techniques used for proving theoretical complex-
ity results, and therefore needs to be established empirically, on the basis of carefully
designed computational experiments. In many cases, state-of-the-art performance is
achieved using several heuristic mechanisms that interact in complex, non-intuitive
ways. For example, a DPLL-style complete solver for SAT (a prototypical NP-
complete problem with important applications in the design of reliable soft- and
hardware) may use different heuristics for selecting variables to be instantiated and
the values first explored for these variables, as well as heuristic mechanisms for
managing and using logical constraints derived from failed solution attempts. The
activation, interaction and precise behaviour of those mechanisms is often controlled
by parameters, and the settings of such parameters have a substantial impact on the

Holger H. Hoos
Department of Computer Science, University of British Columbia, 2366 Main Mall, Vancouver,
BC, V6T 1Z4, Canada, e-mail: hoos@cs.ubc.ca

1 We note that the use of heuristic techniques does not imply that the resulting algorithms are nec-
essarily incomplete or do not have provable performance guarantees, but often results in empirical
performance far better than the bounds guaranteed by rigorous theoretical analysis.

Y. Hamadi et al. (eds.), Autonomous Search,
DOI 10.1007/978-3-642-21434-9 3,
© Springer-Verlag Berlin Heidelberg 2011
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Enunciado do Problema

Definição Uma instância do algoritmo de configuração de parâmetros é uma 6-tupla
〈A,Θ,D, kmax, o,m〉, em que:

• A é um algoritmo parametrizado;

• Θ é o espaço de configuração de parâmetros de A;

• D é a distribuição sobre as instâncias do problema com domı́nio Π;

• kmax é o tempo de corte de cada rodada de A;

• o é uma função que mede o custo observado de rodar A(θ) em uma instância π ∈ Π com
tempo de corte k (por exemplo o custo da solução encontrada);
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Enunciado do Problema

• m é um parâmetro estatı́stico populacional (média, mediana, variância);

• Oθ : distribuição de custos induzidos pela função o, aplicada a instâncias π retiradas de
distribuição D e múltiplas rodadas para algoritmos aleatorizados, em que k = kmax ;

• O custo de uma solução candidata θ é definida por

c(θ) = m(Oθ)
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F-Race

• Método inspirado em algoritmos de competição (racing) em aprendizado de máquina
(machine learning).

• Idéia essencial de métodos de racing é avaliar um conjunto de configurações candidatas
em um conjunto de instâncias. O conjunto de instâncias é gerado a partir de distribuição
uniforme.

• Quando há evidência estatı́stica suficiente contra configurações candidatas, estas são
eliminadas e a competição com as sobreviventes continua.

• Teste de Friedman é usado para avaliar configurações.

• Se a hipótese nula de diferenças é rejeitada, então testes a posteriori de Friedman são
aplicados para eliminar configurações que são muito piores que a melhor.

Vinı́cius A. Armentano - FEEC - UNICAMP - 2014 10



F-Race

• nimin : número mı́nimo de instâncias

42 Holger H. Hoos

procedure F-Race
input target algorithm A, set of configurations C, set of problem instances I,

performance metric m;
parameters integer nimin;
output set of configurations C∗;

C∗ := C; ni := 0;
repeat

randomly choose instance i from set I;
run all configurations of A in C∗ on i;
ni := ni+1;
if ni ≥ nimin then

perform rank-based Friedman test on results for configurations in C∗ on all instances
in I evaluated so far;

if test indicates significant performance differences then
c∗ := best configuration in C∗ (according to m over instances evaluated so far);
for all c ∈ C∗ \{c∗} do

perform pairwise Friedman post hoc test on c and c∗;
if test indicates significant performance differences then

eliminate c from C∗;
end if;

end for;
end if;

end if;
until termination condition met;
return C∗;

end F-Race

Fig. 3.1: Outline of F-Race for algorithm configuration (original version, according
to 11). In typical applications, nimin is set to values between 2 and 5; further details
are explained in the text. When used on its own, the procedure would typically
be modified to return c∗ ∈ C∗ with the best performance (according to m) over all
instances evaluated within the race

post hoc tests between the incumbent and all other configurations is performed. All
configurations found to have performed significantly worse than the incumbent are
eliminated from the race. An outline of the F-Race procedure for algorithm config-
uration, as introduced by [11], is shown in Figure 3.1; as mentioned by [5], runs on
a fixed number of instances are performed before the Friedman test is first applied.
The procedure is typically terminated either when only one configuration remains,
or when a user-defined time budget has been exhausted.

The Friedman test involves ranking the performance results of each configura-
tion on a given problem instance; in the case of ties, the average of the ranks that
would have been assigned without ties is assigned to each tied value. The test then
determines whether some configurations tend to be ranked better than others when
considering the rankings for all instances considered in the race up to the given iter-
ation. Following Birattari et al. [11], we note that performing the ranking separately
for each problem instance amounts to a blocking strategy on instances. The use of
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F-Race Iterado

• Em cada iteração, as configurações sobreviventes são usadas para
enviesar (bias) a distribuição de probabilidade de geração de novas
instância.

• Cada iteração tem três passos:

• Amostre uma configuração inicial Θl
0 baseado na probabilidade pX .

• Avalie o conjunto Θl
0 pelo uso de F-Race.

• Selecione configurações elite de F-Race e atualize pX .
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Aplicações F-Race Iterado
• 338 citações no Google Scholar do primeiro artigo ”A Racing Algorithm for Configuring

Metaheuristics”, publicado em 2002.
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A Racing Algorithm for Configuring Metaheuristics

Mauro Birattari†

IRIDIA
Université Libre de Bruxelles

Brussels, Belgium

Thomas Stützle, Luis Paquete, and Klaus Varrentrapp
Intellektik/Informatik

Technische Universität Darmstadt
Darmstadt, Germany

Abstract

This paper describes a racing procedure for find-
ing, in a limited amount of time, a configuration
of a metaheuristic that performs as good as pos-
sible on a given instance class of a combinatorial
optimization problem. Taking inspiration from
methods proposed in the machine learning litera-
ture for model selection through cross-validation,
we propose a procedure that empirically evalu-
ates a set of candidate configurations by discard-
ing bad ones as soon as statistically sufficient ev-
idence is gathered against them. We empirically
evaluate our procedure using as an example the
configuration of an ant colony optimization algo-
rithm applied to the traveling salesman problem.
The experimental results show that our procedure
is able to quickly reduce the number of candi-
dates, and allows to focus on the most promising
ones.

1 INTRODUCTION

A metaheuristic is a general algorithmic template whose
components need to be instantiated and properly tuned in
order to yield a fully functioning algorithm. The instan-
tiation of such an algorithmic template requires to choose
among a set of different possible components and to assign
specific values to all free parameters. We will refer to such
an instantiation as a configuration. Accordingly, we call
configuration problem the problem of selecting the optimal
configuration.

Practitioners typically configure their metaheuristics in an
iterative process on the basis of some runs of different con-
figurations that are felt as promising. Usually, such a pro-
cess is heavily based on personal experience and is guided

†This research was carried out while MB was with Intellek-
tik, Technische Universität Darmstadt.

by a mixture of rules of thumb. Most often this leads to
tedious and time consuming experiments. In addition, it
is very rare that a configuration is selected on the basis of
some well defined statistical procedure.

The aim of this work is to define an automatic hands-off
procedure for finding a good configuration through sta-
tistically guided experimental evaluations, while minimiz-
ing the number of experiments. The solution we pro-
pose is inspired by a class of methods proposed for solv-
ing the model selection problem in memory-based super-
vised learning (Maron and Moore, 1994; Moore and Lee,
1994). Following the terminology introduced by Maron
and Moore (1994), we call racing method for selection
a method that finds a good configuration (model) from
a given finite pool of alternatives through a sequence of
steps.1 As the computation proceeds, if sufficient evidence
is gathered that some candidate is inferior to at least another
one, such a candidate is dropped from the pool and the pro-
cedure is iterated over the remaining ones. The elimination
of inferior candidates, speeds up the procedure and allows
a more reliable evaluation of the promising ones.

Two are the main contributions of this paper. First, we give
a formal definition of the metaheuristic configuration prob-
lem. Second, we show that a metaheuristic can be tuned
efficiently and effectively by a racing procedure. Our re-
sults confirm the general validity of the racing algorithms
and extend their area of applicability. On a more technical
level, left aside the specific application to metaheuristics,
we give some contribution to the general class of racing
algorithms. In particular, our method adopts blocking de-
sign (Dean and Voss, 1999) in a nonparametric setting. In
some sense, therefore, the method fills the gap between Ho-
effding race (Maron and Moore, 1994) and BRACE (Moore
and Lee, 1994): similarly to Hoeffding race it features a
nonparametric test, and similarly to BRACE it considers a

1Several metaheuristics involve continuous parameters. This
would actually lead to an infinite set of candidate configurations.
In practice, typically only a finite set of possible parameter values
are considered by discretizing the range of continuous parameters.
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Aplicações F-Race Iterado
• 338 citações no Google Scholar do primeiro artigo ”A Racing Algorithm for Configuring

Metaheuristics”, publicado em 2002.
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Aplicações F-Race Iterado

• Diversas aplicações citadas no artigo de 2010 abaixo.

Chapter 13
F-Race and Iterated F-Race: An Overview

Mauro Birattari, Zhi Yuan, Prasanna Balaprakash, and Thomas Stützle

Abstract Algorithms for solving hard optimization problems typically have several
parameters that need to be set appropriately such that some aspect of performance
is optimized. In this chapter, we review F-Race, a racing algorithm for the task
of automatic algorithm configuration. F-Race is based on a statistical approach
for selecting the best configuration out of a set of candidate configurations under
stochastic evaluations. We review the ideas underlying this technique and discuss
an extension of the initial F-Race algorithm, which leads to a family of algo-
rithms that we call iterated F-Race. Experimental results comparing one specific
implementation of iterated F-Race to the original F-Race algorithm confirm the
potential of this family of algorithms.

13.1 Introduction

Many state-of-the-art algorithms for tackling computationally hard problems have a
number of parameters that influence their search behavior. Such algorithms include
exact algorithms such as branch-and-bound algorithms, algorithm packages for inte-
ger programming, and approximate algorithms such as stochastic local search (SLS)
algorithms. The parameters can roughly be classified into numerical and categorical
parameters. Examples of numerical parameters are the tabu tenure in tabu search
algorithms or the pheromone evaporation rate in ant colony optmization (ACO) al-
gorithms. Additionally, many algorithms can be seen as being composed of a set of
specific components that are often interchangeable. Examples are different branch-
ing strategies in branch-and-bound algorithms, different types of crossover opera-
tors in evolutionary algorithms, and different types of local search algorithms in

Mauro Birattari · Zhi Yuan · Prasanna Balaprakash · Thomas Stützle
IRIDIA, CoDE, Université Libre de Bruxelles, Brussels, Belgium
e-mail: {mbiro,zyuan,pbalapra,stuetzle}@ulb.ac.be

311T. Bartz-Beielstein et al. (eds.), Experimental Methods for the Analysis of Optimization 
Algorithms, DOI 10.1007/978-3-642-02538-9_13, © Springer-Verlag Berlin Heidelberg 2010 
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Aplicações F-Race Iterado

330 M. Birattari, Z. Yuan, P. Balaprakash, and T. Stützle

Fine-tuning algorithms The by far most common use of F-Race is to use it as
a method to fine-tune an existing or a recently developed algorithm. Often, tuning
through F-Race is also done before comparing the performance of various algo-
rithms. In fact, this latter usage is important to make reasonably sure that perfor-
mance differences between algorithms are not simply due to uneven tuning.

A significant fraction of the usages of F-Race is due to researchers either in-
volved in the development of the F-Race method or by their collaborators. In fact,
F-Race has been developed in the research for the Metaheuristics Network, an EU-
funded research and training network on the study of metaheuristics. Various appli-
cations there have been for configuring different metaheuristics for the university-
course timetabling problem (Chiarandini and Stützle 2002, Manfrin 2003, Rossi-
Doria et al. 2003) and also for various other problems (Chiarandini 2005, Chiaran-
dini and Stützle 2007, den Besten 2004, Risler et al. 2004, Schiavinotto and Stützle
2004).

Soon after these initial applications, F-Race was also adopted by a number of
other researchers. Most applications focus on configuring SLS methods for combi-
natorial optimization problems (Bin Hussin et al. 2007, Balaprakash et al. 2009a,
Di Gaspero and Roli 2008, Di Gaspero et al. 2007, Lenne et al. 2007, Pellegrini
2005, Philemotte and Bersini 2008). However, also other applications have been
considered, including the tuning of algorithms for training neural networks (Blum
and Socha 2005, Socha and Blum 2007) or the tuning of parameters of a control
system for simple robots (Nouyan 2008, Nouyan et al. 2008).

Industrial applications Few researches have evaluated F-Race in pilot studies
for industrial applications. The first has been a feasibility study, where F-Race
was used to configure a commercial solver for vehicle routing and scheduling prob-
lems, which has been developed by the software company SAP. In this research,
six configuration tasks have been considered that ranged from the study of specific
parameters, which determined the frequency of the application of some important
operators of the program, to the configuration of the SLS method that was used
in the software package. F-Race was compared with a strategy that after each
fixed number of instances discarded a fixed percentage of the worst candidate con-
figurations, showing, as expected, advantages for F-Race when the performance
differences between configurations were stronger. Some results of this study have
been published by Becker et al. (2005); more details are available in a master thesis
(Becker 2004).

Yuan et al. (2008) have adopted F-Race to configure several algorithms for a
highly constrained train scheduling problem arising at Deutsche Bahn AG. A com-
parison of various tuned algorithms identified an iterated greedy algorithm as the
most promising one.

Algorithm development F-Race has occasionally also been used to explicitly sup-
port the algorithm development process. A first example is described by Chiarandini
et al. (2006) who used F-Race to design a hybrid metaheuristic for the university-
course timetabling problem. In their work they have adopted F-Race in a semi-
automatic way. They observed the algorithm candidates that were maintained in a
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Aplicações F-Race Iterado

13 F-Race and Iterated F-Race: An Overview 331

race and based on this information they generated new algorithm candidates that
were then manually added to the ongoing race. In fact, one of these newly in-
jected candidate algorithms was finally the best performing algorithm in an inter-
national timetabling competition (see also http://www.idsia.ch/Files/
ttcomp2002).

The PhD work of den Besten (2004) provides an empirical investigation into the
application of ILS to solve a range of deterministic scheduling problems with tardi-
ness penalties. Racing in general, and F-Race in particular, is a very important in-
gredient throughout the algorithm development and calibration. The ILS algorithms
are built in a modular way and F-Race is applied to assess each combination of
modular components of the algorithm.

Comparison of F-Race with other methods There have been some compar-
isons of F-Race with other racing algorithms. Some preliminary results compar-
ing F-Race and t-test-based racing techniques are presented by Birattari (2004b,
2009), showing that F-Race typically performs best.

Yuan and Gallagher (2004) discuss the use of F-Race for the empirical evalua-
tion of evolutionary algorithms. They also use an algorithm called A-Race, where
the family-wise test is based on the analysis of variance (ANOVA) method. From
the experiments they conduct, they conclude that their version of F-Race obtains
better results than A-Race.

In their work Caelen and Bontempi (2005) compare five techniques from various
communities on a model selection task. The techniques compared are (i) a two-stage
selection technique proposed in the stochastic simulation community, (ii) a stochas-
tic dynamic programming approach conceived to address the multi-armed bandit
problem, (iii) a racing method, (iv) a greedy approach, and (v) a round-search tech-
nique. F-Race is mentioned and applied for comparison purposes. The comparison
results shows that the bandit strategy yields the most promising performance when
the sample size is small, but F-Race outperforms other techniques when the sam-
ple size is sufficiently large.

Extensions and hybrids of F-Race The F-Race algorithm has been adopted as
a module integrated into an ACO algorithm framework for tackling combinatorial
optimization problems under uncertainty (Birattari et al. 2007). The resulting algo-
rithm is called ACO/F-Race and it uses F-Race to determine the best of a set of
candidate solutions generated by the ACO algorithm. In later work by Balaprakash
et al. (2009b) on the application of estimation-based ACO algorithms to the proba-
bilistic traveling salesman problem the Friedman test is replaced by an ANOVA.

Yuan and Gallagher (2005, 2007) propose an approach to tune evolutionary al-
gorithms by hybridizing Meta-EA and F-Race. Meta-EA is an approach that uses
various genetic operators to tune the parameters of EAs. It is reported that one ma-
jor difficulty in Meta-EA is that it cannot effectively handle categorical parame-
ters. These categorical parameters are usually handled in Meta-EA by pure random
search. The proposed hybridization uses Meta-EA to evolve part of the numerical
parameters and leave the categorical parameters for F-Race. Experiment show that
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ParamILS

• Outro método de configuração automática de parâmetros baseado na meta-heurı́stica
busca local iterada (iterated local search-ILS).

• ILS é simples, derivada da heurı́stica de Lin-Kernighan (1973) para TSP simétrico, e tem
sido aplicada com sucesso.

• ILS parte de uma solução factı́vel e segue uma trajetória determinada por uma vizinhança
até chegar a um ótimo local x .

• A solução x é perturbada aleatóriamente para escapar do ótimo local, e a busca continua
até o próximo ótimo local x ′, que pode se aceito ou rejeitado.

• Aceitar x ′ somente se for melhor que x corresponde a uma intensificação da busca,
enquanto aceitar sempre x ′ corresponde a uma diversificação da busca.

• Um critério intermediário é aceitar x ′ com uma probabilidade similar àquela usada em
simulated annealing.
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ParamILS Básico

• Inicialização: uma dada configuração de partida θ0, r configurações θi , i = 1, . . . , r obtidas
por distribuição uniforme, e s movimento aleatórios para perturbação, N instâncias.

• Compara θ0 com θi em N instâncias e escolhe a de melhor estimativa ĉN (θ) do custo c(θ).

• Busca local: aceita o primeiro movimento de melhoria do custo e usa s movimentos
aleatórios de perturbação.

• Sempre aceita configurações melhores ou de igual qualidade, mas pode reinicializar a
busca de forma aleatória com probabilidade prestart (uma ”diversificação”).

• Vizinho obtido por mudança de um único parâmetro.
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ParamILS Focado - FocusedILS

• Seleção adaptativa do número de instâncias de treinamento.

• Número pequeno leva a generalização pobre, número grande faz com que o progresso da
busca seja muito lento.

• FocusedILS é uma variante de ParamILS que aborda o problema de variar adaptativamente
o número de instâncias de treinamento de uma configuração para outra.

• N(θ) : número de rodadas disponı́veis para avaliar a estatı́stica do custo c(θ) da
configuração de parâmetros θ.

• Definição (Dominância). θ1 domina θ2 se e somente se N(θ1) ≥ N(θ2) e ĉN(θ2) ≤ ĉN(θ1).
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ParamILS Focado - FocusedILS

• Lema (Número ilimitado de avaliações). Seja N(J, θ) o número de rodadas que
FocusedILS foi executado com configuração de parâmetro θ até a iteração J para estimar
c(θ). Então para qualquer constante K e configuração θ ∈ Θ(|Θ|finito)

lim
J→∞

P[N(J, θ) ≥ K ] = 1

• Definição (Estimador consistente). ĉN (θ) é um estimador consistente de c(θ) se e
somente se

∀ε > 0 : lim
N→∞

P|(ĉN (θ)− c(θ)| < ε) = 1

• Lema (Sem enganos para N →∞). Sejam θ1 e θ2 duas configurações de parâmetros com
cθ1 < cθ2 . Então, para estimadores consistentes ĉN

lim
N→∞

P(ĉN (θ1) ≥ ĉN (θ2)) = 0
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ParamILS - Resultados Computacionais

190 F. Hutter, H.H. Hoos, and K. Leyton-Brown

Table 1. Target algorithms and characteristics of their parameter configuration spaces. For details,
see http://www.cs.ubc.ca/labs/beta/Projects/MIP-Config/

Algorithm Parameter type # parameters of this type # values considered Total # configurations
Boolean 6 (7) 2

CPLEX Categorical 45 (43) 3–7 1.90 · 1047

MILP (MIQCP) Integer 18 5–7 (3.40 · 1045)
Continuous 7 5–8

Boolean 4 2

GUROBI
Categorical 16 3–5

3.84 · 1014
Integer 3 5

Continuous 2 5

LPSOLVE
Boolean 40 2

1.22 · 1015
Categorical 7 3–8

κmax, the maximal amount of time after which PARAMILS will terminate a run of
the target algorithm as unsuccessful. FOCUSEDILS version 2.4 also supports adaptive
capping, a speedup technique that sets the captimes κ ≤ κmax for individual target
algorithm runs, thus permitting substantial savings in computation time.

FOCUSEDILS is a randomized algorithm that tends to be quite sensitive to the order-
ing of its training benchmark instances. For challenging configuration tasks some of its
runs often perform much better than others. For this reason, in previous work we adopted
the strategy to perform 10 independent parallel runs of FOCUSEDILS and use the result
of the run with best training performance [16, 19]. This is sound since no knowledge
of the test set is required in order to make the selection; the only drawback is a 10-fold
increase in overall computation time. If none of the 10 FOCUSEDILS runs encounters
any successful algorithm run, then our procedure returns the algorithm default.

3 MIP Solvers

We now discuss the three MIP solvers we chose to study and their respective parameter
configuration spaces. Table 1 gives an overview.

IBM ILOG CPLEX is the most-widely used commercial optimization tool for solv-
ing MIPs. As stated on the CPLEX website (http://www.ilog.com/products/
cplex/), currently over 1 300 corporations and government agencies use CPLEX, along
with researchers at over 1 000 universities. CPLEX is massively parameterized and end
users often have to experiment with these parameters:

“Integer programming problems are more sensitive to specific parameter set-
tings, so you may need to experiment with them.” (ILOG CPLEX 12.1 user
manual, page 235)

Thus, the automated configuration of CPLEX is very promising and has the potential to
directly impact a large user base.

We used CPLEX 12.1 (the most recent version) and defined its parameter configu-
ration space as follows. Using the CPLEX 12 “parameters reference manual”, we iden-
tified 76 parameters that can be modified in order to optimize performance. We were
careful to keep all parameters fixed that change the problem formulation (e.g., param-
eters such as the optimality gap below which a solution is considered optimal). The
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76 parameters we selected affect all aspects of CPLEX. They include 12 preprocessing
parameters (mostly categorical); 17 MIP strategy parameters (mostly categorical); 11
categorical parameters deciding how aggressively to use which types of cuts; 9 numeri-
cal MIP “limits” parameters; 10 simplex parameters (half of them categorical); 6 barrier
optimization parameters (mostly categorical); and 11 further parameters. Most param-
eters have an “automatic” option as one of their values. We allowed this value, but also
included other values (all other values for categorical parameters, and a range of values
for numerical parameters). Exploiting the fact that 4 parameters were conditional on
others taking certain values, these 76 parameters gave rise to 1.90 · 1047 distinct param-
eter configurations. For mixed integer quadratically-constrained problems (MIQCP),
there were some additional parameters (1 binary and 1 categorical parameter with 3
values). However, 3 categorical parameters with 4, 6, and 7 values were no longer ap-
plicable, and for one categorical parameter with 4 values only 2 values remained. This
led to a total of 3.40 · 1045 possible configurations.

GUROBI is a recent commercial MIP solver that is competitive with CPLEX on some
types of MIP instances [23]. We used version 2.0.1 and defined its configuration space
as follows. Using the online description of GUROBI’s parameters,1 we identified 26
parameters for configuration. These consisted of 12 mostly-categorical parameters that
determine how aggressively to use each type of cuts, 7 mostly-categorical simplex pa-
rameters, 3 MIP parameters, and 4 other mostly-Boolean parameters. After disallowing
some problematic parts of configuration space (see Section 4.2), we considered 25 of
these 26 parameters, which led to a configuration space of size 3.84 · 1014.

LPSOLVE is one of the most prominent open-source MIP solvers. We determined 52 pa-
rameters based on the information at http://lpsolve.sourceforge.net/. These
parameters are rather different from those of GUROBI and CPLEX: 7 parameters are
categorical, and the rest are Boolean switches indicating whether various solver mod-
ules should be employed. 17 parameters concern presolving; 9 concern pivoting; 14
concern the branch & bound strategy; and 12 concern other functions. After disallow-
ing problematic parts of configuration space (see Section 4.2), we considered 47 of
these 52 parameters. Taking into account one conditional parameter, these gave rise to
1.22 · 1015 distinct parameter configurations.

4 Experimental Setup

We now describe our experimental setup: benchmark sets, how we identified problem-
atic parts in the configuration spaces of GUROBI and LPSOLVE, and our computational
environment.

4.1 Benchmark Sets

We collected a wide range of MIP benchmarks from public benchmark libraries and
other researchers, and split each of them 50:50 into disjoint training and test sets; we
detail these in the following.

1 http://www.gurobi.com/html/doc/refman/node378.html#sec:
Parameters
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MJA. This set comprises 343 machine-job assignment instances encoded as mixed in-
teger quadratically constrained programming (MIQCP) problems [2]. We obtained it
from the Berkeley Computational Optimization Lab (BCOL).2 On average, these in-
stances contain 2 769 variables and 2 255 constraints (with standard deviations 2 133
and 1 592, respectively).

MIK. This set comprises 120 mixed-integer knapsack instances encoded as mixed in-
teger linear programming (MILP) problems [4]; we also obtained it from BCOL. On
average, these instances contain 384 variables and 151 constraints (with standard devi-
ations 309 and 127, respectively).

CLS. This set of 100 MILP-encoded capacitated lot-sizing instances [5] was also ob-
tained from BCOL. Each instance contains 181 variables and 180 constraints.

REGIONS100. This set comprises 2 000 instances of the combinatorial auction win-
ner determination problem, encoded as MILP instances. We generated them using the
regions generator from the Combinatorial Auction Test Suite [22], with parameters
goods=100 and bids=500. On average, the resulting MILP instances contain 501 vari-
ables and 193 inequalities (with standard deviations 1.7 and 2.5, respectively).

REGIONS200. This set contains 2 000 instances similar to those in REGIONS100 but
larger; we created it with the same generator using goods=200 and bids=1 000. On
average, the resulting MILP instances contain 1 002 variables and 385 inequalities (with
standard deviations 1.7 and 3.4, respectively).

MASS. This set comprises 100 integer programming instances modelling multi-activity
shift scheduling [10]. On average, the resulting MILP instances contain 81 994 variables
and 24 637 inequalities (with standard deviations 9 725 and 5 391, respectively).

CORLAT. This set comprises 2 000 MILP instances based on real data used for the
construction of a wildlife corridor for grizzly bears in the Northern Rockies region
(the instances were described by Gomes et al. [11] and made available to us by Bistra
Dilkina). All instances had 466 variables; on average they had 486 constraints (with
standard deviation 25.2).

4.2 Avoiding Problematic Parts of Parameter Configuration Space

Occasionally, we encountered problems running GUROBI and LPSOLVE with certain
combinations of parameters on particular problem instances. These problems included
segmentation faults as well as several more subtle failure modes, in which incorrect
results could be returned by a solver. (CPLEX did not show these problems on any of
the instances studied here.) To deal with them, we took the following measures in our
experimental protocol. First, we established reference solutions for all MIP instances
using CPLEX 11.2 and GUROBI, both run with their default parameter configurations
for up to one CPU hour per instance.3 (For some instances, neither of the two solvers
could find a solution within this time; for those instances, we skipped the correctness
check described in the following.)

2 http://www.ieor.berkeley.edu/˜atamturk/bcol/, where this set is called
conic.sch.

3 These reference solutions were established before we had access to CPLEX 12.1.
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In order to identify problematic parts of a given configuration space, we ran 10
PARAMILS runs (with a time limit of 5 hours each) until one of them encountered
a target algorithm run that either produced an incorrect result (as compared to our ref-
erence solution for the respective MIP instance), or a segmentation fault. We call the
parameter configuration θ of such a run problematic. Starting from this problematic
configuration θ, we then identified what we call a minimal problematic configuration
θmin. In particular, we iteratively changed the value of one of θ’s parameters to its re-
spective default value, and repeated the algorithm run with the same instance, captime,
and random seed. If the run still had problems with the modified parameter value, we
kept the parameter at its default value, and otherwise changed it back to the value it
took in θ. Iterating this process converges to a problematic configuration θmin that is
minimal in the following sense: setting any single non-default parameter value of θmin

to its default value resolves the problem in the current target algorithm run.
Using PARAMILS’s mechanism of forbidden partial parameter instantiations, we

then forbade any parameter configurations that included the partial configuration de-
fined by θmin’s non-default parameter values. (When all non-default values for a pa-
rameter became problematic, we did not consider that parameter for configuration,
clamping it to its default value.) We repeated this process until no problematic con-
figuration was found in the PARAMILS runs: 4 times for GUROBI and 14 times for
LPSOLVE. Thereby, for GUROBI we removed one problematic parameter and disal-
lowed two further partial configurations, reducing the size of the configuration space
from 1.32 · 1015 to 3.84 · 1014. For LPSOLVE, we removed 5 problematic binary flags
and disallowed 8 further partial configurations, reducing the size of the configuration
space from 8.83 · 1016 to 1.22 · 1015. Details on forbidden parameters and partial con-
figurations, as well as supporting material, can be found at http://www.cs.ubc.ca/
labs/beta/Projects/MIP-Config/

While that first stage resulted in concise bug reports we sent to GUROBI and LP-
SOLVE, it is not essential to algorithm configuration. Even after that stage, in the exper-
iments reported here, target algorithm runs occasionally disagreed with the reference
solution or produced segmentation faults. We considered the empirical cost of those
runs to be ∞, thereby driving the local search process underlying PARAMILS away
from problematic parameter configurations. This allowed PARAMILS to gracefully han-
dle target algorithm failures that we had not observed in our preliminary experiments.
We could have used the same approach without explicitly identifying and forbidding
problematic configurations.

4.3 Computational Environment

We carried out the configuration of LPSOLVE on the 840-node Westgrid Glacier cluster,
each with two 3.06 GHz Intel Xeon 32-bit processors and 2–4GB RAM. All other
configuration experiments, as well as all evaluation, was performed on a cluster of 55
dual 3.2GHz Intel Xeon PCs with 2MB cache and 2GB RAM, running OpenSuSE
Linux 10.1; runtimes were measured as CPU time on these reference machines.

Vinı́cius A. Armentano - FEEC - UNICAMP - 2014 25



ParamILS - Resultados Computacionais

194 F. Hutter, H.H. Hoos, and K. Leyton-Brown

Table 2. Results for minimizing the runtime required to find an optimal solution and prove its
optimality. All results are for test sets disjoint from the training sets used for the automated
configuration. We report the percentage of timeouts after 24 CPU hours as well as the mean
runtime for those instances that were solved by both approaches. Bold-faced entries indicate
better performance of the configurations found by PARAMILS than for the default configuration.
(To reduce the computational burden, results for LPSOLVE on REGIONS200 and CORLAT are
only based on 100 test instances sampled uniformly at random from the 1000 available ones.)

Algorithm Scenario
% test instances unsolved in 24h mean runtime for solved [CPU s] Speedup
default PARAMILS default PARAMILS factor

MJA 0% 0% 3.40 1.72 1.98×
MIK 0% 0% 4.87 1.61 3.03×

REGIONS100 0% 0% 0.74 0.35 2.13×
CPLEX REGIONS200 0% 0% 59.8 11.6 5.16×

CLS 0% 0% 47.7 12.1 3.94×
MASS 0% 0% 524.9 213.7 2.46×

CORLAT 0% 0% 850.9 16.3 52.3×
MIK 0% 0% 2.70 2.26 1.20×

REGIONS100 0% 0% 2.17 1.27 1.71×

GUROBI
REGIONS200 0% 0% 56.6 40.2 1.41×

CLS 0% 0% 58.9 47.2 1.25×
MASS 0% 0% 493 281 1.75×

CORLAT 0.3% 0.2% 103.7 44.5 2.33×
MIK 63% 63% 21 670 21 670 1×

REGIONS100 0% 0% 9.52 1.71 5.56×

LPSOLVE
REGIONS200 12% 0% 19 000 124 153×

CLS 86% 42% 39 300 1 440 27.4×
MASS 83% 83% 8 661 8 661 1×

CORLAT 50% 8% 7 916 229 34.6×

5 Minimization of Runtime Required to Prove Optimality

In our first set of experiments, we studied the extent to which automated configuration
can improve the time performance of CPLEX, GUROBI, and LPSOLVE for solving the
seven types of instances discussed in Section 4.1. This led to 3 · 6 + 1 = 19 configura-
tion scenarios (the quadratically constrained MJA instances could only be solved with
CPLEX).

For each configuration scenario, we allowed a total configuration time budget of 2
CPU days for each of our 10 PARAMILS runs, with a captime of κmax = 300 seconds
for each MIP solver run. In order to penalize timeouts, during configuration we used
the penalized average runtime criterion (dubbed “PAR-10” in our previous work [19]),
counting each timeout as 10 · κmax. For evaluation, we report timeouts separately.

For each configuration scenario, we compared the performance of the parameter con-
figuration identified using PARAMILS against the default configuration, using a test set
of instances disjoint from the training set used during configuration. We note that this
default configuration is typically determined using substantial time and effort; for ex-
ample, the CPLEX 12.1 user manual states (on p. 478):

“A great deal of algorithmic development effort has been devoted to establish-
ing default ILOG CPLEX parameter settings that achieve good performance on
a wide variety of MIP models.”
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instance for either of the two benchmark sets. For the other benchmarks, speedups were
very substantial, reaching up to a factor of 153 (on REGIONS200).

Figure 2 shows the speedups for 4 configuration scenarios. Figures 2(a) to (c) show
the scenario with the largest speedup for each of the solvers. In all cases, PARAM-
ILS’s configurations scaled better to hard instances than the algorithm defaults, which
in some cases timed out on the hardest instances. PARAMILS’s worst performance was
for the 2 LPSOLVE scenarios for which it simply returned the default configuration; in
Figure 2(d), we show results for the more interesting second-worst case, the configura-
tion of GUROBI on MIK. Observe that here, performance was actually rather good for
most instances, and that the poor speedup in test performance was due to a single hard
test instance. Better generalization performance would be achieved if more training in-
stances were available.

6 Minimization of Optimality Gap

Sometimes, we are interested in minimizing a criterion other than mean runtime. Algo-
rithm configuration procedures such as PARAMILS can in principle deal with various
optimization objectives; in our own previous work, for example, we have optimized me-
dian runlength, average speedup over an existing algorithm, and average solution qual-
ity [20, 15]. In the MIP domain, constraints on the time available for solving a given
MIP instance might preclude running the solver to completion, and in such cases, we
may be interested in minimizing the optimality gap (also known as MIP gap) achieved
within a fixed amount of time, T .

To investigate the efficacy of our automated configuration approach in this context,
we applied it to CPLEX, GUROBI and LPSOLVE on the 5 benchmark distributions with

Table 3. Results for configuration of MIP solvers to reduce the relative optimality gap reached
within 10 CPU seconds. We report the percentage of test instances for which no feasible solution
was found within 10 seconds and the mean relative gap for the remaining test instances. Bold
face indicates the better configuration (recall that our lexicographic objective function cares first
about the number of instances with feasible solutions, and then considers the mean gap among
feasible instances only to break ties).

Algorithm Scenario
% test instances for which no feas. sol. was found mean gap when feasible Gap reduction
default PARAMILS default PARAMILS factor

MIK 0% 0% 0.15% 0.02% 8.65×
CLS 0% 0% 0.27% 0.15% 1.77×

CPLEX REGIONS200 0% 0% 1.90% 1.10% 1.73×
CORLAT 28% 1% 4.43% 1.22% 2.81×

MASS 88% 86% 1.91% 1.52% 1.26×
MIK 0% 0% 0.02% 0.01% 2.16×
CLS 0% 0% 0.53% 0.44% 1.20×

GUROBI REGIONS200 0% 0% 3.17% 2.52% 1.26×
CORLAT 14% 5% 3.22% 2.87% 1.12×

MASS 68% 68% 76.4% 52.2% 1.46×
MIK 0% 0% 652% 14.3% 45.7×
CLS 0% 0% 29.6% 7.39% 4.01×

LPSOLVE REGIONS200 0% 0% 10.8% 6.60% 1.64×
CORLAT 68% 13% 4.19% 3.42% 1.20×

MASS 100% 100% - - -
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the longest average runtimes, with the objective of minimizing the average relative op-
timality gap achieved within T = 10 CPU seconds. To deal with runs that did not find
feasible solutions, we used a lexicographic objective function that counts the fraction of
instances for which feasible solutions were found and breaks ties based on the mean rel-
ative gap for those instances. For each of the 15 configuration scenarios, we performed
10 PARAMILS runs, each with a time budget of 5 CPU hours.

Table 3 shows the results of this experiment. For all but one of the 15 configuration sce-
narios, the automatically-found parameter configurations performed substantially better
than the algorithm defaults. In 4 cases, feasible solutions were found for more instances,
and in 14 scenarios the relative gaps were smaller (sometimes substantially so; consider,
e.g., the 45-fold reduction for LPSOLVE, and note that the gap is not bounded by 100%).
For the one configuration scenario where we did not achieve an improvement, LPSOLVE

on MASS, the default configuration of LPSOLVE could not find a feasible solution for
any of the training instances in the available 10 seconds, and the same turned out to be
the case for the thousands of configurations considered by PARAMILS.

7 Comparison to CPLEX Tuning Tool

The CPLEX tuning tool is a built-in CPLEX function available in versions 11 and above.4

It allows the user to minimize CPLEX’s runtime on a given set of instances. As in our
approach, the user specifies a per-run captime, the default for which is κmax = 10 000
seconds, and an overall time budget. The user can further decide whether to minimize
mean or maximal runtime across the set of instances. (We note that the mean is usually
dominated by the runtimes of the hardest instances.) By default, the objective for tuning
is to minimize mean runtime, and the time budget is set to infinity, allowing the CPLEX
tuning tool to perform all the runs it deems necessary.

Since CPLEX is proprietary, we do not know the inner workings of the tuning tool;
however, we can make some inferences from its outputs. In our experiments, it always
started by running the default parameter configuration on each instance in the bench-
mark set. Then, it tested a set of named parameter configurations, such as ‘no cuts’,
‘easy’, and ‘more gomory cuts’. Which configurations it tested depended on the bench-
mark set.

PARAMILS differs from the CPLEX tuning tool in at least three crucial ways. First,
it searches in the vast space of all possible configurations, while the CPLEX tuning tool
focuses on a small set of handpicked candidates. Second, PARAMILS is a randomized
procedure that can be run for any amount of time, and that can find different solutions
when multiple copies are run in parallel; it reports better configurations as it finds them.
The CPLEX tuning tool is deterministic and runs for a fixed amount of time (dependent
on the instance set given) unless the time budget intervenes earlier; it does not return a
configuration until it terminates. Third, because PARAMILS does not rely on domain-
specific knowledge, it can be applied out of the box to the configuration of other MIP

4 Incidentally, our first work on the configuration of CPLEX predates the CPLEX tuning tool.
This work, involving Hutter, Hoos, Leyton-Brown, and Stützle, was presented and published as
a technical report at a doctoral symposium in Sept. 2007 [14]. At that time, no other mechanism
for automatically configuring CPLEX was available; CPLEX 11 was released Nov. 2007.
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Table 4. Comparison of our approach against the CPLEX tuning tool. For each benchmark set,
we report the time t required by the CPLEX tuning tool (it ran out of time after 2 CPU days for
REGIONS200 and CORLAT, marked by ’*’) and the CPLEX name of the configuration it judged
best. We report the mean runtime of the default configuration; the configuration the tuning tool
selected; and the configurations selected using 2 sets of 10 PARAMILS runs, each allowed time
t/10 and 2 days, respectively. For the PARAMILS runs, in parentheses we report the speedup
over the CPLEX tuning tool. Boldface indicates improved performance.

Scenario
CPLEX tuning tool stats CPLEX mean runtime [CPU s] on test set, with respective configuration

Tuning time t Name of result Default CPLEX tuning tool 10× PARAMILS(t/10) 10× PARAMILS(2 days)
CLS 104 673 ’defaults’ 48.4 48.4 15.1(3.21×) 10.1(4.79×)

REGIONS100 3 117 ’easy’ 0.74 0.86 0.48(1.79×) 0.34(2.53×)
REGIONS200 172 800* ’defaults’ 59.8 59.8* 14.2(4.21×) 11.9(5.03×)

MIK 36 307 ’long test1’ 4.87 3.56 1.46(2.44×) 0.98(3.63×)
MJA 2 266 ’easy’ 3.40 3.18 2.71(1.17×) 1.64(1.94×)

MASS 28 844 ’branch dir’ 524.9 425.8 627.4(0.68×) 478.9(0.89×)
CORLAT 172 800* ’defaults’ 850.9 850.9* 161.1(5.28×) 18.2(46.8×)
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Fig. 3. Comparison of the default configuration and the configurations returned by the CPLEX

tuning tool and by our approach. The x-axis gives the total time budget used for configuration
and the y-axis the performance (CPLEX mean CPU time on the test set) achieved within that
budget. For PARAMILS, we perform 10 runs in parallel and count the total time budget as the
sum of their individual time requirements. The plot for REGIONS200 is qualitatively similar to
the one for REGIONS100, except that the gains of PARAMILS are larger.

solvers and, indeed, arbitrary parameterized algorithms. In contrast, the few configura-
tions in the CPLEX tuning tool appear to have been selected based on substantial domain
insights, and the fact that different parameter configurations are tried for different types
of instances leads us to believe that it relies upon MIP-specific instance characteristics.
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